Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33351740

RESUMO

A moderately halophilic, Gram-stain-negative, aerobic bacterium, strain D1-1T, belonging to the genus Halomonas, was isolated from soil sampled at Pentha beach, Odisha, India. Phylogenetic trees reconstructed based on 16S rRNA genes and multilocus sequence analysis of gyrB and rpoD genes revealed that strain D1-1T belonged to the genus Halomonas and was most closely related to Halomonas alimentaria YKJ-16T (98.1 %) followed by Halomonas ventosae Al12T (97.5 %), Halomonas sediminicola CPS11T (97.5 %), Halomonas fontilapidosi 5CRT (97.4 %) and Halomonas halodenitrificans DSM 735T (97.2 %) on the basis of 16S rRNA gene sequence similarity. Sequence identities with other species within the genus were lower than 97.0 %. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values of 22.4-30 % and 79.5-85.4 % with close relatives of H. halodenitrificans DSM 735T, H. alimentaria YKJ-16T, H. ventosae Al12T and H. fontilapidosi 5CRT were lower than the threshold recommended for species delineation (70 % and 95-96 % for dDDH and ANI, respectively). Further, strain D1-1T formed yellow-coloured colonies; cells were rod-shaped, motile with optimum growth at 30 °C (range, 4-45 °C) and 2-8 % NaCl (w/v; grew up to 24 % NaCl). The major fatty acids were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c) and C16 : 0 and the main respiratory quinone was ubiquinone Q-9 in line with description of the genus. Based on its chemotaxonomic and phylogenetic characteristics and genome uniqueness, strain D1-1T represents a novel species in the genus Halomonas, for which we propose the name Halomonas icarae sp. nov., within the family Halomonadaceae. The type strain is D1-1T (=JCM 33602T=KACC 21317T=NAIMCC-B-2254T).


Assuntos
Halomonas/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Praias , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Halomonas/isolamento & purificação , Índia , Hibridização de Ácido Nucleico , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-32674337

RESUMO

Antibiotics have constantly been added at an unprecedented rate in order to enhance poultry meat production. Such antibiotics impose a negative impact on human health directly through meat and egg consumption. On the other hand, they also affect humans indirectly by affecting the normal key microbial processes in the agricultural environments, when used as poultry compost. For many years, farmers have been turning poultry litter into compost for agricultural use. Very few studies have addressed the fate of the unmetabolized antibiotic residues in poultry litter that could potentially affect microbial communities when used as poultry compost. We have also questioned the fate of residual antibiotic in poultry waste which may create possible negative environmental pressure on microbial communities that are involved in microbial mediated poultry litter composting processes. The incorporation of antibiotic degrading environmental isolates in poultry litter at the initial stage of composting in order to accelerate the process is addressed in this review as a future perspective.


Assuntos
Antibacterianos , Compostagem , Aves Domésticas , Agricultura , Animais , Humanos , Esterco , Solo
3.
Beilstein J Nanotechnol ; 5: 1864-72, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383298

RESUMO

We report the synthesis of Pt nanoparticles and their burrowing into silicon upon irradiation of a Pt-Si thin film with medium-energy neon ions at constant fluence (1.0 × 10(17) ions/cm(2)). Several values of medium-energy neon ions were chosen in order to vary the ratio of the electronic energy loss to the nuclear energy loss (S e/S n) from 1 to 10. The irradiated films were characterized using Rutherford backscattering spectroscopy (RBS), atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). A TEM image of a cross section of the film irradiated with S e/S n = 1 shows ≈5 nm Pt NPs were buried up to ≈240 nm into the silicon. No silicide phase was detected in the XRD pattern of the film irradiated at the highest value of S e/S n. The synergistic effect of the energy losses of the ion beam (molten zones are produced by S e, and sputtering and local defects are produced by S n) leading to the synthesis and burrowing of Pt NPs is evidenced. The Pt NP synthesis mechanism and their burrowing into the silicon is discussed in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...